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We p ropose  a method of calculat ing the h e a t - t r a n s f e r  coeff icients  that is based  on compar i son  
of the opera t ional  data and the equations of h e a t - t r a n s f e r  dynamics .  

In many of the chemica l  p r o c e s s e s  taking place in appara tus  of per iodic  opera t ion there  is a r a the r  
b road  range of va r ia t ion  in t e m p e r a t u r e  (100-300~ and the var ia t ions  in the h e a t - t r a n s f e r  coefficients 
thus r each  significant  magni tudes.  For  example ,  in the product ion of ce r t a in  types of synthetic r e s ins  
the h e a t - t r a n s f e r  coeff ic ients  va ry  by f ac to r s  of 2.5-3.5 [1, 2]. 

This makes  absolutely c lear  the need for considera t ion  of the effect  of t e m p e r a t u r e  in the h e a t - t r a n s -  
fe r  coeff icients  whose de te rmina t ion  is bes t  accompl i shed  with appl icat ion of the method of dynamic c h a r a c -  
t e r i s t i c s  [2]. 

The dynamics  of heat  exchange in per iodic  equipment can be descr ibed  with sufficient accuracy  [1-3] 
by a nonlinear d i f ferent ia l  equation of the fo rm 

dy ('0 a (y) ~ + by ('0 = x (% (1) 

The analyt ical  der iva t ion  of the dynamics  equation has demons t ra ted  [1, 2] that for the var ious  hea t -  
exchange methods a(y) and x(r) have the fo rm:  

f rom the sa tu ra ted  vapors  of the heat  c a r r i e r s  

Mc (g) (2) a (y)  - 
k (y)  F 

x (~) = is, (2a) 

f rom s ing le -phase  h e a t - t r a n s f e r  media  

a (y)  = 

f rom the wall  of the appara tus  

Mc (v) , (3) 

W [ 1 - - e x p ( ,  k (g) ) ]  

( , )  = t ~ ,  (3a) 

Mc (g) (4) 
a (y) 

a (y) F 

x (T) = tw. (4a) 

From (2)-(4) it is not difficult to de te rmine  the coeff icients  of heat  t r ans f e r*  and of heat  exchange, 
these  being functions of y(r) .  The heat  capaci ty  as a function of t e m p e r a t u r e ,  i . e . ,  c{y), must  be known in 

* It is easy to make the t rans i t ion  f rom the h e a t - t r a n s f e r  coeff icients  to the hea t -exchange  coefficients  by 
means  of the Wilson method [4]. 
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advance and for the majori ty of cases  can be approximated by the l inear  relationship 

c (y) = Po + P~ y, (5) 

whose coefficients P0 and Pl are found f rom the known tabulated values by the method of least  squares.  

Consequently, the problem of calculating the heat-exchange coefficients reduces to the determination 
of a(y), which is best  accomplished by an expe r imen ta l - ana ly t i ca l  method whose essence involves the fol- 
lowing. Let us set up the following experiment  in the equipment being investigated, and for the t ime in- 
te rva l  [0, Tn] let us write the functions Xex(~) and Yex(Ti), together  with the random per turbat ions  imposed 
on these.  These functions a re  found most  frequently in a table for the values of Xex(T i) = Xexi; Yex(Ti) 
= Yexi (i = 0, 1, 2 . . . . .  n). 

Fur ther ,  let  us compile the functional 

~n 

+ = - y  (6 )  

0 

or the function 

I;=O 

In these express ions  y(~-) is the solution of (1) for x(~-) = Xex(~) , 0 -~ ~ -< ~n, and y(0) = Yex(0). In (1) 
we have to choose the function a(y) for which the functional attains its minimum. Most probably,  + > 0, 
since (1) descr ibes  the dynamics of the apparatus only approximately.  If we can find a(y) f rom this condition, 
Eq. (1) will best descr ibe  the heat-exchange p rocess  of a specific piece of equipment (within the f ramework  
of s imi lar  relat ionships),  since with Yex(~') we take into considerat ion all of that piece of equipment 's  in- 
dividual features ,  e . g . ,  deposition on the walls,  etc. 

The formulated problem is a variat ional  problem with a conditional ext remum, and the use of the 
Lagrange method for its solution is made difficult by the absence in (6) of the extremal  a(y) and its f i rs t  
derivative.  We will therefore  offer two methods below for an approximate determinat ion (using a digital 
computer) of the function a(y) f rom the experimental ly found values of Xex(7) and Yex(~). 

Let  us assume that Xex(~') = Xex(~') + Zx('r) and Yex('r) = Yex(7) + Zy(~-), where Zx(~') and Zy(~-) are  nor -  
mally distributed per turbat ions  with zero  mathematical  expectations; Xex(~') and ~ex(,) are  smooth mono- 
tonic functions. The sources  for the appearance of zx(~-) and Zy(~-) are  the e r r o r s  in the measurement  of 
Xex(~-) and Yex(~-) during the course  of the experiments ,  as well as random fluctuations in the observed 
p a r a m e t e r s ,  the effect of factors  for which no provision had been made, etc. Let us approximate the tab-  
ulated functions Xexi, Yexi (i = 0, 1, 2, . . . .  n) by the orthogonal Chebyshev polynomials with a weighting 
function equal to unity, and we find 

= = + ,  (7 )  

k k 

~=0 ~.--0 

It is obvious that (p ~(~-) are  polynomials of degree ~,, while eX are constant Four ier  coefficients ca l -  
culated from the famil iar  formulas  of (5). Then rx and d)~ are  easily found in t e rms  of c h and (p)~(~-), after 
cancellation of s imi lar  t e rms .  The values of m and k are  chosen so as to fi l ter  out the perturbat ions zx(~) 
and Zy(T) and not to dis tor t  the significant s ingulari t ies  of Xex(~) an d ~ex(7). For this we can use one of 
two methods. 

Let us specify the value m = m I (usually m s is a small  number,  e . g . ,  m s = 1), and we will calculate 

n + l  
(9) 
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Fig. 1. Relationship giving x and y as functions of time: 

1) xI(~'); 2) YI(rS; 3) YII('r); 45 yIII(~). 

We will then assume m 2 = m 1 + 1, we will find D[x(m 1 + 15], and we will compare  the dispersions.  If 
D[x(ml)] is substantially l a rge r  than D[x(m I + 15], for example, by 20-40%, we assume m is equal to m 1 + 2, 
we determine D[x(m + 25], and the la t ter  is compared with the dispers ion for D[x(m + 15]. With a slight dif- 
ference between the values of D[x(ml)] and D[x(m 1 + 15] we take the quantity m I for m. 

The second method of finding m or k will be used if ZX(T 5 and Zy(~'5 are  governed exclusively by the 
measurement  e r r o r s .  If Ax is the grea tes t  e r r o r  in the measurement  of  X e x ( T )  -- determined by the class 
of the i n s t r u m e n t -  we have the relationship D[x(m)] -< (Ax/3) 2, f rom which we can find the value of m.* 
The orthogonality of (75 and (85 simplif ies the problem of calculating rk  and dk in chosing m and k. 

Fur ther ,  assuming that x(~') ~ Xex(T5 and y(l") ~ Yex(TS, we find a(T) f rom (15 as a function of t ime: 

k 

a (~) = ~=0 ~=0 ( 1 0 5  

The denominator in (10) is found by the differentiation operation,  which here  does not resul t  in the 
appearance of significant e r r o r s ,  since the perturbat ion Zy(T) has been separated f rom Yex(~'5. 

Substantial e r r o r s  a r i se  only when Yex(~') ~ const at cer ta in  segments.  These segments are usually 
found at the beginning and end of the interval [0, Tn]. To reduce the e r r o r  in the determinat ion of a(~') we 
must eliminate the segments  with Yex(T5 ~ const f rom our examination during the course  of the calculation. 

Comparing the values of a(Ti) with Yex(~'i), we obtain 
! 

a ( y ) =  ~ q ~ y ~ ,  (115 
k=O 

where the coefficients qk are  found by the method of least  squares .  

The accuracy  in the determinat ion of a(Y5 by this method, as a rule,  is completely acceptable for 
engineering calculations. However, our assumptions to the effect that the bounds of the mathematical  ex- 
pectations Zx(~-) and Zy('r) a re  equal to zero ,  while Y(~-) --- :~ex(~'5 when 0 -< ~- -< ~'n, are  ra ther  rigid, and 
what is most important,  frequently cannot be verified.  These can be found in the determinat ion of a{y) by 
the second method, i . e . ,  an i teration method. 

Let us expand a(y) in ser ies  in powers of y, i . e . ,  

l 

a (y) = Z q~Y~" (125 
x=0 

We will specify the values of l, assuming usually that l = 3-5. Having substituted (125 into (1) and 
having found the solution y(7) for X(T5 = Xex(T5 by some numerical  method, we determine the magnitude of 
r  Express ions  (6) or (6a) have now been turned into a function of the unknown variables  qh- Consequently, 

"*The determinat ion of k is handled in a s imi lar  fashion. 
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The funct ion a(y):  1) aI (Y); II) aII  (Y); III) 
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Fig.  3. T e m p e r a t u r e  r e l a t ionsh ip  for  the h e a t -  
exchange  coef f ic ien t s :  1) ~I (y) ;  II) kII (y); II1) 

klII  (y). 

to  d e t e r m i n e  a(y) we have to find the se t  qx for  which the funct ion �9 a t ta ins  the loca l  condit ional  min imum.  
The m i n i m i z a t i o n p r o b l e m  is s o l v e d b y  a g r a d i e n t  method.  We find the point  of  m i n i m u m  @ by the i t e ra t ion  
f o r m u l a  for  [6], s u c c e s s i v e l y  for  each  j - t h  i t e ra t ion  (] = 0, 1, 2 . . . . .  n) with the i t e ra t ion  in te rva l  h 

q~+~ = q~. - -  h O (I)/Oq~ (13) 

V / ~  (O q~/aq~) 2 
~,=0 

The pa r t i a l  d e r i v a t i v e s  3 ~ / 0 q x  a r e  ca lcu la ted  by a d i f fe ren t  method.  To speed up the p r o c e s s  of 
f inding the min imum  ~ we have to a s s u m e  the qx f r o m  (11) as  the init ial  app rox ima t ion  of q~, thus s i m -  
u l t aneous ly  d e t e r m i n i n g  the choice  of the o r d e r  of  the po lynomia l s .  Since both methods  of de t e rmin ing  a(y) 
use  the s a m e  init ial  da ta ,  it is expedient  to compi le  a s ingle  ca lcu la t ion  p r o g r a m  for  the digi ta l  compu te r .  

Let  us explain  the above  method in an example  of  de t e rmin ing  a(y) for  r e a c t o r s :  with an induct ion 
hea t ing  method (curves  xi(T) and yI(m), see  Fig.  17; with a j acke t  hea ted  by the s a tu r a t ed  v a p o r s  of a h igh-  
t e m p e r a t u r e  o rgan ic  hea t  c a r r i e r ,  i . e . ,  d i to ly lme thane  (• = cons t  = 300~ YII(T), see  Fig.  1); with an 
ex te rna l  coil  hea ted  by a s i n g l e - p h a s e  l iquid TAS-190 o rgan ic  s i l i con  heat  c a r r i e r  (xIII(m) = cons t  = 250~ 
Yiii(~-), s ee  Fig.  1). 

We have thus p r e s e n t e d  the fol lowing methods  of ach iev ing  hea t  exchange with the m a t e r i a l  in the ap -  
p a r a t u s :  hea t  exchange  with the wall  of the a p p a r a t u s ,  the t r a n s f e r  of hea t  f r o m  the f i lm condensa te ,  and the 
t r a n s f e r  of  heat  f r o m  a s i n g ! e - p h a s e  l iquid hea t  c a r r i e r .  

Le t  us p r e s e n t  the e x p e r i m e n t a l l y  de r ived  da ta  as  po lynomia l s  of the f o r m  of (7) and (87 with m 1 = k 1 
= 2 and m 2 = k~ = 3. Since D[xt(m~)J = 77.98 [~ and D[xl(rnz)] = 77.47 [~ in the in te rva l  0 ~ ~- -< 220 
rain we can a p p r o x i m a t e  s by the e x p r e s s i o n  

x I (z) = 70.548 +0.592~+0.13.10 -2 ~2. (14) 

S imi l a r ly ,  for  yi( 'r)  w e h a v e  [D(yl(ki)] = 19.083 [~ 2] and D[y~(k2)] = 17.11 [~ and t h e r e f o r e ,  for  the 
s a m e  t ime  in te rva l  

y~ (~) = 39.362 + 0.730~ + 0.728.10-~ ~ . (15) 

In s i m i l a r  fashion,  we obtain the po lynomia l s  fo r  the r e m a i n i n g  two c a s e s :  

YlI (~)= 21,898 + 4.286 ~ - -  0,0273 ~2 + 0.707.10 -4 ~3 (16) 

when 0 ~ I: ~ 105 rain, 

Ym (~) = 36.559 + 5.566T - -  0.0444~ 2 + 0,1279. l0 -3 za 

when O~.<"c.~. 115 rain. (17) 
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Having d i f fe ren t ia ted  (15) with r e s p e c t  to ~- and hav ingsubs t i t u t ed  yi(1-), ~ri(T), and xi(-r ) into (10), we 
ca lcu la te  a(T i) at the point  ~'i for  AT = q + t  -- Ti = 5 rain, i = 0, 1 . . . . .  45. It is then easy  to find the g r a p h -  
ical  funct ion a(y),  plot t ing the va lues  of YIex(Ti) and ai(Ti) along the axes (see cu rve  I in Fig.  2). We a p -  
p r o x i m a t e  the table of c o r r e s p o n d e n c e s  llYIex(q),  ai(q)[[  by the po lynomia l  

a I (g~) = 52.37427 --0.366704 gj + 0.9506.10-" g~. (18) 

The chosen  d e g r e e  of  the po lynomia l  b e c o m e s  unde r s t andab le  f r o m  c o m p a r i s o n  of  the d i s p e r s i o n s  

D [a~ (1)] = 9,94 [~ D [a~ (2)] : 0.563 [~ D [a~ (3)] = 0.394 [~ 

F o r  the two r e m a i n i n g  a p p a r a t u s e s ,  we obtain  the g r aph i ca l  r e l a t ionsh ips  in a s i m i l a r  manner  (see 
c u r v e s  II and III  in Fig. 2), as  well  as the app rox ima t ion  po lynomia l s :  

a n (g) = 68.33467 - -  0.152847 gn + 0. i 071. I0 -~ g~ - -  0.3184.10 -s g~, (19) 

a m (y) = 50.0595 - -  0.369444 Ym + 0.2752.10 -~ Y~n - -  0.8561.10 -5 y3ni (20) 

with D [ a  n (3 ) ]=  0.48 [~ [a m (3)] : 1.398 [~ 

The  funct ion allI(Y) for  243.5 < Yiii(1-) -< 247.1 is nega t ive ,  and as  was  explained above,  this  is not a 
phys ica l  pa radox  - a nega t ive  h e a t - e x c h a n g e  coeff ic ient  - but is a r e s u l t  exc lus ive ly  of an e r r o r  in d i f f e r -  
ent ia t ion ,  s ince  beginning with T = 85 rain, YIII(T) b e c o m e s  v i r tua l ly  constant .  Since the a c c u r a c y  with 
which the h e a t - e x c h a n g e  coeff ic ient  is ca lcu la ted  about the z e r o  value of  Yiii(7) is low, it is  advisab le  to 
r e d u c e  the in te rva l  for  the spec i f i ca t ion  of the expe r imen ta l  da ta  and of  funct ions  (17) and (20) to [0, 85] rain, 
e l imina t ing  the points  f r o m  YlII(90) to YIII(115) f r o m  our  cons ide ra t ion ,  s ince  these  a r e  v i r tua l ly  indis t in-  
gu ishab le  f r o m  one ano ther .  

The coef f ic ien ts  fo r  the de r ived  equat ions  (18)-(20) a r e  f u r t h e r  re f ined  by the g rad ien t  method.  To 
ca lcu la t e  the pa r t i a l  de r i va t i ve s  we have t e s t  i n c r e m e n t s  Aqx , amount ing  to 1 -2%of  the found va lues  of qA; 
the quant i ty  h amoun t s  to 3-5% of q~ for  ~(qhj+!) < ~(ql j )  and begins  to d imin i sh  by hal f  with each in terva l  
as  the  inequal i ty  is d i s rupted;  Eq. (1) was  in teg ra ted  on the c o m p u t e r  by the  R u n g e - K u t t a  method 
with a v a r i a b l e  in te rva l .  The  init ial  va lues  of the funct ion ~, r e s p e c t i v e l y ,  amounted  to 

q)~ (q0) = 90.175; d) n (q~) = 38.559and r  (q~) = 581.83. 

Af te r  descen t  f r o m  q~ on the bas i s  of (13), s topping with the r e d u c t i o n o f  h to the number  2 -19 (the p r o b l e m  
was  solved on a compu te r  with 42 b ina ry  digi ts) ,  we found the m i n i m u m  va lues  of the funct ions 

r : q)i : 89"4; (I)n : 36.26; (1) m = 143.243. 

As a r e s u l t  of  these  ca l cu la t ions*  the final funct ions  a(y) a s s u m e  the f o r m :  

a~ (y) = 52.37426 - -  0.366222 y~ + 0.944354.10 -a y~ (18a) 
when 37.1 -<~ YI "< 236.2, 

a n (y) = 68.33766 - -  0.152847 Yn + 0.10721.10 -2 Y~i - -  0.3285.10 -5 Y~I (19a) 

when 20.15 .~ glI -~ 253.45, 

ani (g) = 52.000 - -  0.3694 Ym + 0.2752.10 -3 Ym --- 0.8586.10 -~ gm (20a) 

when 40.1 -< Ym ~ 243.55. 

It fo l lows f r o m  ana lys i s  of the ca lcu la t ion  r e s u l t s  that  the coef f ic ien t s  for  the expans ion  of aI(y) and 
aII(Y), found by the app rox ima t ion  method,  a r e  r a t h e r  c lose  to the va lues  of qh which min imize  ~. The c o -  
e f f ic ients  of the s e r i e s  aIII(Y) va r i ed  m o r e  s igni f icant ly  (the funct ion/b  d iminshed  f r o m  581.83 to 143.243)~ 
and this  can be explained by the fact  tha t  the coef f ic ien t s  of Eq. (20) had not been  a c c u r a t e l y  d e t e r m i n e d  b e -  
cause  of the p r e s e n c e  - in the e xpe r i m e n t a l  cu rve  - of a s egmen t  in which the t e m p e r a t u r e  of the m a t e r i a l  
underwent  v i r tua l ly  no change.  

The concluding s tage  of the ope ra t i on  is the d e t e r m i n a t i o n  of the h e a t - e x c h a n g e  coef f ic ien ts  fo r  all  of 
the a b o v e - c o n s i d e r e d  c a s e s  on the b a s i s  of the fol lowing f o r m u l a s :  

M I c (g) (21) 
~i (Y) - a~ (Y~I  ' 

*The  mach ine  t i m e  for  the  ca lcu la t ion  of a(y) for  an a v e r a g e - c a p a c i t y  digi tal  c o m p u t e r  is 2"5 sec;  f r o m  
1 to 5 rain a r e  needed  for  p u r p o s e s  of  r e f i n e m e n t  by the g rad i en t  method.  
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MII c (y) 
kIi (g)= 

an (g) Fir 

W In 1 
km (v) = 7 1 Mni  c (g) 

ani (g) W 

In these  examples  c(y) = 1.83 + 0.485 �9 10 -3 y is the heat  capaci ty  of the ma te r i a l  in the appara tus ;  
M I = 450 kg; MII = MIII = 1365 kg; FI = 3.0 m2; FII = 5.5 m2; FIII = 8.5 m2; W = 16 kW/degC.  

The resu l t ing  re la t ionships  for  the hea t -exchange  coeff icients  a re  shown in Fig. 3. 

(22) 

(23) 

Y ('r) 
x(-r) 

a(y) 

b 
T 
M 
c(y) 
~(y) and k(y) 
W 
F 
t s ,  t~, and t w 

N O T A T I O N  

is the t e m p e r a t u r e  of the ma te r i a l  in the appara tus ,  ~ 
is the t e m p e r a t u r e  effect  f rom the h e a t - t r a n s f e r  medium or  f rom the wall  of the appa -  
r a tus ,  ~ 
is a continuous function of y(7) ,  min; 
is a constant fac tor  for mos t  of the equipment,  i . e . ,  b = 1.02-1.05; 
is the t i m e ,  rain; 
is the m a s s  of the m a t e r i a l ,  kg; 
is the heat  capaci ty  of the m a t e r i a l ,  k J / k g - d e g C ;  
a r e ,  r e spec t ive ly ,  the hea t -exchange  and h e a t - t r a n s f e r  coeff ic ients ,  kW/m 2. deg C; 
is the wa te r  equivalent of one-phase  h e a t - t r a n s f e r  media ,  kW/deg C; 
is the hea t -exchange  su r face ,  m2; 
a r e ,  r e spec t ive ly ,  the t e m p e r a t u r e s  of the sa tu ra ted  vapor s ,  of the one-phase  h e a t - t r a n s -  
fe r  medium at the inlet to the appara tus ,  and of the walls  of the appara tus ,  ~ 

i. 

2. 
3.  
4. 
5. 

6. 
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